ERBE 04 2 06
Corporate Bankruptcy Prediction: Bridging the Gap Between SME and Large Firm Models
EDIMAR RAMALHO a, MARA MADALENO a, JORGE MOTA
a,b
a DEGEIT & GOVCOPP, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal, b Research Center in Economics & Business Sciences (CICEE).
To cite this article:
Edimar Ramalho, Madaleno, M., Mota, J. 2025. Corporate Bankruptcy Prediction: Bridging the Gap Between SME and Large Firm Models, European Review of Business Economics IV(2): 123-146.
DOI: https://doi.org/10.26619/ERBE-2024.4.2.6
Received: 24 March 2025. Accepted: 29 April 2025. Published: 30 June 2025.
Language: English
Abstract
Research on corporate bankruptcy prediction has garnered renewed interest due to economic crises and regulatory changes. Most studies focus on large enterprises, leaving a gap in understanding bankruptcy prediction in small and medium-sized enterprises (SMEs). This study carries out a systematic literature review to examine the evolution of this topic, focusing on SMEs. Using a structured methodology based on PRISMA, we analysed 541 academic papers, categorising them into two groups: (i) SMEs and (ii) non-SMEs. Our findings reveal key distinctions between the two groups, particularly regarding the definition of bankruptcy, financial and non-financial predictive factors, and the types of models applied. While statistical models, such as logistic regression and discriminant analysis, remain dominant in SME-focused research, artificial intelligence-based techniques are gaining traction. The study also identifies a lack of comparative studies assessing model effectiveness for SMEs across different economic contexts. Based on these insights, we propose a framework to enhance future research in corporate bankruptcy prediction, emphasising the need for models that integrate macroeconomic variables, governance factors, and alternative risk assessment techniques tailored to SMEs. Our findings contribute to bridging the gap between theory and empirical research, offering practical implications for financial institutions, auditors, policymakers, and SME managers in mitigating bankruptcy risks.
Keywords
Bankruptcy prediction, Predictive models, SMEs, Systematic literature review.
Abdullah, N. A. H., Ahmad, A. H., Zainudin, N., & Rus, R. M. (2016). Modelling small and medium-sized enterprises’ failure in Malaysia. International Journal of Entrepreneurship and Small Business, 28(1), 101–116. https://doi.org/10.1504/IJESB.2016.075686
Abdullah, N. A. H., Ahmad, A. H., Zainudin, N., & Rus, R. M. (2019). Predicting Financially Distressed Small- and Medium-sized Enterprises in Malaysia. Global Business Review, 20(3), 627–639. https://doi.org/10.1177/0972150919837053
Achyarsyah, P. (2016). The analysis of the influence of financial distress, debt default, company size, and leverage on going concern opinion1. International Journal of Applied Business and Economic Research, 14(10), 6767–6782.
Aguiar-Díaz, I., & Ruiz-Mallorquí, M. V. (2015). Causes and resolution of bankruptcy: The efficiency of the law. Spanish Review of Financial Economics, 13(2), 71–80. https://doi.org/10.1016/j.srfe.2015.04.001
Alaka, H., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M., & Ajayi, S. (2019). A Big Data Analytics Approach for Construction Firms Failure Prediction Models. IEEE Transactions on Engineering Management, 66(4), 689–698. https://doi.org/10.1109/TEM.2018.2856376
Alan, Y., & Lapré, M. A. (2018). Investigating Operational Predictors of Future Financial Distress in the US Airline Industry. Production and Operations Management, 27(4), 734–755. https://doi.org/10.1111/poms.12829
Alfaro, E., García, N., Gámez, M., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45(1), 110–122. https://doi.org/10.1016/J.DSS.2007.12.002
Altman, E. I. (1974). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 29(1), 312–312. https://doi.org/10.1111/j.1540-6261.1974.tb00057.x
Altman, E. I., Balzano, M., Giannozzi, A., & Srhoj, S. (2023). Revisiting SME default predictors: The Omega Score. Journal of Small Business Management, 61(6), 2383–2417. https://doi.org/10.1080/00472778.2022.2135718
Altman, E. I., Hotchkiss, E., & Wang, W. (2019). Corporate financial distress – Introduction and statistical background. In: Corporate financial distress, restructuring, and bankruptcy – Analyze leveraged finance, distressed debt, and bankruptcy, 4th Ed. Chapter 1: 3-20.
Altman, E. I., Sabato, G., & Wilson, N. (2010). The value of non-financial information in small and medium-sized enterprise risk management. The Journal of Credit Risk, 6(2), 1–33. http://people.stern.nyu.edu/ealtman/Altman-Sabbato-Wilson-JCR_2010.pdf
Andrade, G., & Kaplan, S. N. (1997). How costly is financial (not economic) distress? Evidence from highly leveraged transactions that became distressed. NBER Working Paper No. 6145. National Bureau of Economic Research. doi:10.3386/w6145
Andresson, A., & Lukason, O. (2024). Corporate default prediction with payment disturbances in managers’ earlier entrepreneurial practices. Cogent Business and Management, 11(1). https://doi.org/10.1080/23311975.2024.2302203
Balcaen, S., & Ooghe, H. (2006). 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63–93. https://doi.org/10.1016/J.BAR.2005.09.001
Barboza, F., Kimura, H., & Altman, E. I. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405–417. https://doi.org/10.1016/j.eswa.2017.04.006
Beade, Á., Rodríguez, M., & Santos, J. (2024). Business failure prediction models with high and stable predictive power over time using genetic programming. Operational Research, 24(3). https://doi.org/10.1007/s12351-024-00852-7
Bellovary, J. L., Giacomino, D. E., & Akers, M. D. (2007). Financial Education Association A Review of Bankruptcy Prediction Studies: 1930 to Present A Review of Bankruptcy Prediction Studies: 1930 to Present. Source: Journal of Financial Education, 333713(Winter 2007), 1–42.
Berent, T., Bławat, B., Dietl, M., Krzyk, P., & Rejman, R. (2017). Firm’s default — new methodological approach and preliminary evidence from Poland. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 753–773. https://doi.org/10.24136/eq.v12i4.39
Berryman, J. E. (1993). Small Business Failure and Bankruptcy: What Progress Has Been Made in a Decade? Small Enterprise Research, 2(1–2), 5–27. https://doi.org/10.5172/ser.2.1-2.5
Carvalho, P. V., Curto, J. D., & Primor, R. (2022). Macroeconomic determinants of credit risk: Evidence from the Eurozone. International Journal of Finance and Economics, 27(2), 2054–2072. https://doi.org/10.1002/ijfe.2259
Cefis, E., Bettinelli, C., Coad, A., & Marsili, O. (2022). Understanding firm exit: a systematic literature review. Small Business Economics, 59(2), 423–446. https://doi.org/10.1007/s11187-021-00480-x
Chang, S., Lee, H., & Kelley, D. (2008). High-tech based ventures’ survival after environmental jolts in Korea: The role of tangible versus intangible resource buffers. International Journal of Business Performance Management, 10(1), 39–56. https://doi.org/10.1504/IJBPM.2008.015920
Chen, H. L., Yang, B., Wang, G., Liu, J., Xu, X., Wang, S. J., & Liu, D. Y. (2011). A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method. Knowledge-Based Systems, 24(8), 1348–1359. https://doi.org/10.1016/J.KNOSYS.2011.06.008
Cheng, C. H., & Wang, S. H. (2015). A quarterly time-series classifier based on a reduced-dimension generated rules method for identifying financial distress. Quantitative Finance, 15(12), 1979–1994. https://doi.org/10.1080/14697688.2015.1008029
Cheraghali, H., & Molnár, P. (2023). SME default prediction: A systematic methodology-focused review. Journal of Small Business Management, 62(6), 2847–2905. https://doi.org/10.1080/00472778.2023.2277426
Ciampi, F., Giannozzi, A., Marzi, G., & Altman, E. I. (2021). Rethinking SME default prediction: a systematic literature review and future perspectives. In Scientometrics (Vol. 126, Issue 3). Springer International Publishing. https://doi.org/10.1007/s11192-020-03856-0
Citterio, A. (2024). Bank failure prediction models: Review and outlook. Socio-Economic Planning Sciences, 92(December 2023), 101818. https://doi.org/10.1016/j.seps.2024.101818
Citterio, A., & King, T. (2023). The role of Environmental, Social, and Governance (ESG) in predicting bank financial distress. Finance Research Letters, 51(October 2022), 103411. https://doi.org/10.1016/j.frl.2022.103411
Clement, C. (2020). Machine Learning in Bankruptcy Prediction. Journal of Public Administration, Finance and Law, 17(17), 20.
Costa, M., & Lisboa, I. (2023). Default prediction of small and medium enterprises: Portuguese construction sector. Journal of Financial Management of Property and Construction. https://doi.org/10.1108/JFMPC-01-2022-0004
Crosato, L., Domenech, J., & Liberati, C. (2021). Predicting SME’s default: Are their websites informative? Economics Letters, 204. https://doi.org/10.1016/j.econlet.2021.109888
Dasilas, A., & Rigani, A. (2024). Machine learning techniques in bankruptcy prediction: A systematic literature review. Expert Systems with Applications, 255, 124761. https://doi.org/https://doi.org/10.1016/j.eswa.2024.124761
Divsalar, M., Roodsaz, H., Vahdatinia, F., Norouzzadeh, G., & Behrooz, A. H. (2012). A robust data-mining approach to bankruptcy prediction. Journal of Forecasting, 31(6), 504–523. https://doi.org/10.1002/for.1232
do Prado, J. W., de Melo Carvalho, F., de Benedicto, G. C., & Lima, A. L. R. (2019). Analysis of credit risk faced by public companies in Brazil: An approach based on discriminant analysis, logistic regression and artificial neural networks. Estudios Gerenciales, 35(153), 347–360. https://doi.org/10.18046/j.estger.2019.153.3151
du Jardin, P. (2017). Dynamics of firm financial evolution and bankruptcy prediction. Expert Systems with Applications, 75, 25–43. https://doi.org/10.1016/j.eswa.2017.01.016
Dube, F., Nzimande, N., & Muzindutsi, P.-F. (2023). Application of artificial neural networks in predicting financial distress in the JSE financial services and manufacturing companies. Journal of Sustainable Finance and Investment, 13(1), 723–743. https://doi.org/10.1080/20430795.2021.2017257
Durica, M., Valaskova, K., & Janoskova, K. (2019). Logit business failure prediction in V4 countries. Engineering Management in Production and Services, 11(4), 54–64. https://doi.org/10.2478/emj-2019-0033
Fantazzini, D., & Figini, S. (2009). Default forecasting for small-medium enterprises: Does heterogeneity matter? International Journal of Risk Assessment and Management, 11(1–2), 138–163. https://doi.org/10.1504/IJRAM.2009.022202
Gallucci, C., Santullli, R., Modina, M., & Formisano, V. (2023). Financial ratios, corporate governance and bank-firm information: a Bayesian approach to predict SMEs’ default. Journal of Management and Governance, 27(3), 873–892. https://doi.org/10.1007/s10997-021-09614-5
Gupta, J., Gregoriou, A., & Healy, J. (2015). Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter? Review of Quantitative Finance and Accounting, 45(4), 845–869. https://doi.org/10.1007/s11156-014-0458-0
Gupta, J., Wilson, N., Gregoriou, A., & Healy, J. (2014). The value of operating cash flow in modelling credit risk for SMEs. Applied Financial Economics, 24(9), 649–660. https://doi.org/10.1080/09603107.2014.896979
Habib, A. M. (2023). Do business strategies and environmental, social, and governance (ESG) performance mitigate the likelihood of financial distress? A multiple mediation model. Heliyon, 9(7). https://doi.org/10.1016/j.heliyon.2023.e17847
Halabí, C. E., & Lussier, R. N. (2014). A model for predicting small firm performance: Increasing the probability of entrepreneurial success in Chile. Journal of Small Business and Enterprise Development, 21(1), 4–25. https://doi.org/10.1108/JSBED-10-2013-0141
Halim, F. A., Malim, M. R., Derasit, Z., Rani, R. M., & Rashid, S. S. (2017). The impact of macroeconomic variables on SMEs in Malaysia. Journal of Physics: Conference Series, 890(1). https://doi.org/10.1088/1742-6596/890/1/012138
Hammond, P., Opoku, M. O., Kwakwa, P. A., & Amissah, E. (2023). Predictive models of going concerns and business failure. Cogent Business and Management, 10(2). https://doi.org/10.1080/23311975.2023.2226481
Harzing, A. W. (2019). Two new kids on the block: How do Crossref and Dimensions compare with Google Scholar, Microsoft Academic, Scopus and the Web of Science? In Scientometrics (Vol. 120, Issue 1, pp. 341–349). Springer Netherlands. https://doi.org/10.1007/s11192-019-03114-y
Ho, C. Y., McCarthy, P., Yang, Y., & Ye, X. (2013). Bankruptcy in the pulp and paper industry: Market’s reaction and prediction. Empirical Economics, 45(3), 1205–1232. https://doi.org/10.1007/s00181-012-0661-6
Hotchkiss, E. S., John, K., & Mooradian, R. M. (2008) Bankruptcy and the resolution of financial distress. In: B. E. Eckbo, Editor. Handbook of Empirical Corporate Finance, Vol. 2, Chapter 14: 235-287. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-444-53265-7.50006-8
Iparraguirre-Villanueva, O., & Cabanillas-Carbonell, M. (2024). Predicting business bankruptcy: A comparative analysis with machine learning models. Journal of Open Innovation: Technology, Market, and Complexity, 10(3), 100375. https://doi.org/10.1016/j.joitmc.2024.100375
Javaid, M. I., & Javid, A. Y. (2018). Efficacy of going concern prediction model for creditor-oriented regime via liquidation: A MDA approach. Journal of Applied Accounting Research, 19(4), 552–573. https://doi.org/10.1108/JAAR-07-2017-0070
Jones, S., & Wang, T. (2019). Predicting private company failure: A multi-class analysis. Journal of International Financial Markets, Institutions and Money, 61, 161–188. https://doi.org/10.1016/j.intfin.2019.03.004
Kahl, M. (2002). Economic distress, financial distress, and dynamic liquidation. Journal of Finance, 57(1), 135–168. https://doi.org/10.1111/1540-6261.00418
Kamaluddin, A., Ishak, N., & Mohammed, N. F. (2019). Financial distress prediction through cash flow ratios analysis. International Journal of Financial Research, 10(3), 63–76. https://doi.org/10.5430/ijfr.v10n3p63
Kang, T. H., James, S. D., & Fabian, F. (2020). Real options and strategic bankruptcy. Journal of Business Research, 117(May), 152–162. https://doi.org/10.1016/j.jbusres.2020.05.057
Karas, M., & Reznakova, M. (2020). Cash flows indicators in the prediction of financial distress. Engineering Economics, 31(5), 525–535. https://doi.org/10.5755/j01.ee.31.5.25202
Kärkinen, E.-L., & Laitinen, E. K. (2015). Financial and non-financial information in reorganisation failure prediction. International Journal of Management and Enterprise Development, 14(2), 144–171. https://doi.org/10.1504/IJMED.2015.070099
Karminsky, A. M., & Burekhin, R. N. (2019). Comparative analysis of methods for forecasting bankruptcies of Russian construction companies. Business Informatics, 13(3), 52–66. https://doi.org/10.17323/1998-0663.2019.3.52.66
Kim, H., Cho, H., & Ryu, D. (2020). Corporate default predictions using machine learning: Literature review. Sustainability (Switzerland), 12(16), 1–11. https://doi.org/10.3390/SU12166325
Kim, H., & Gu, Z. (2006). A logistic regression analysis for predicting bankruptcy in the hospitality industry. Journal of Hospitality Financial Management, 14(1), 17–34. doi:10.1080/10913211.2006.10653866
Koh, H. C. (1991). Model Predictions and Auditor Assessments of Going Concern Status. Accounting and Business Research, 21(84), 331–338. https://doi.org/10.1080/00014788.1991.9729848
Konno, Y. (2014). Default or exit? Empirical study on SMEs in the Japanese construction industry. Construction Management and Economics, 32(10), 1017–1029. https://doi.org/10.1080/01446193.2014.927068
Konstantaras, K., & Siriopoulos, C. (2011). Estimating financial distress with a dynamic model: Evidence from family owned enterprises in a small open economy. Journal of Multinational Financial Management, 21(4), 239–255. https://doi.org/10.1016/j.mulfin.2011.04.001
Kuizinienė, D., Krilavičius, T., Damaševičius, R., & Maskeliūnas, R. (2022). Systematic Review of Financial Distress Identification using Artificial Intelligence Methods. Applied Artificial Intelligence, 36(1). https://doi.org/10.1080/08839514.2022.2138124
Laitinen, E. K. (1992). Prediction of failure of a newly founded firm. Journal of Business Venturing, 7(4), 323–340. https://doi.org/10.1016/0883-9026(92)90005-C
Levratto, N. (2013). From failure to corporate bankruptcy: a review. Journal of Innovation and Entrepreneurship, 2(1), 20. https://doi.org/10.1186/2192-5372-2-20
Li, L., & Faff, R. (2019). Predicting corporate bankruptcy: What matters? International Review of Economics and Finance, 62, 1–19. https://doi.org/10.1016/j.iref.2019.02.016
Liashenko, O., Kravets, T., & Kostovetskyi, Y. (2023). Machine Learning and Data Balancing Methods for Bankruptcy Prediction. Ekonomika, 102(2), 28–46. https://doi.org/10.15388/Ekon.2023.102.2.2
Lin, F., Yeh, C.-C., & Lee, M.-Y. (2013). A hybrid business failure prediction model using locally linear embedding and support vector machines. Romanian Journal of Economic Forecasting, 16(1), 82–97.
Lin, H.-W. W., Lo, H.-C., & Wu, R.-S. (2016). Modeling default prediction with earnings management. Pacific Basin Finance Journal, 40, 306–322. https://doi.org/10.1016/j.pacfin.2016.01.005
Lin, S. M., Ansell, J., & Andreeva, G. (2012). Predicting default of a small business using different definitions of financial distress. Journal of the Operational Research Society, 63(4), 539–548. https://doi.org/10.1057/jors.2011.65
Lisboa, I., Costa, M., & Santos, F. (2021). Analysis of family SMEs default risk: The Portuguese case. Australasian Accounting, Business and Finance Journal, 15(4), 76–92. https://doi.org/10.14453/aabfj.v15i4.5
Liu, J., & Wu, C. (2019). Hybridizing kernel-based fuzzy c-means with hierarchical selective neural network ensemble model for business failure prediction. Journal of Forecasting, 38(2), 92–105. https://doi.org/10.1002/for.2561
Modina, M., Pietrovito, F., Gallucci, C., & Formisano, V. (2023). Predicting SMEs’ default risk: Evidence from bank-firm relationship data. Quarterly Review of Economics and Finance, 89, 254–268. https://doi.org/10.1016/j.qref.2023.04.008
Mselmi, N., Lahiani, A., & Hamza, T. (2017). Financial distress prediction: The case of French small and medium-sized firms. International Review of Financial Analysis, 50, 67–80. https://doi.org/10.1016/J.IRFA.2017.02.004
Navarro-Galera, A., Lara-Rubio, J., Novoa-Hernández, P., & Cruz Corona, C. A. (2024). Using Decision Trees to Predict Insolvency in Spanish SMEs: Is Early Warning Possible? Computational Economics, 0123456789. https://doi.org/10.1007/s10614-024-10586-5
Nurhayati, I., Endri, E., Suharti, T., Sundarta, I., & Rinda, R. T. (2022). The Accuracy of Financial Distress Prediction During the COVID-19 Pandemic on Healthcare Sub-Sector Companies. WSEAS Transactions on Business and Economics, 19, 1463–1475. https://doi.org/10.37394/23207.2022.19.132
Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109–31.
Ong, S. W., Choong Yap, V., & Khong, R. W. L. (2011). Corporate failure prediction: a study of public listed companies in Malaysia. Managerial Finance, 37(6), 553–564. https://doi.org/10.1108/03074351111134745
Park, M. S., Son, H., Hyun, C., & Hwang, H. J. (2021). Explainability of machine learning models for bankruptcy prediction. IEEE Access, 9, 124887-124899. https://doi.org/10.1109/ACCESS.2021.3110270
Pham Vo Ninh, B., Do Thanh, T., & Vo Hong, D. (2018). Financial distress and bankruptcy prediction: An appropriate model for listed firms in Vietnam. Economic Systems, 42(4), 616–624. https://doi.org/10.1016/j.ecosys.2018.05.002
Piatti, D. (2014). Operating cash flow and creditworthiness assessment. Academy of Accounting and Financial Studies Journal, 18(2), 1–20.
Ragab, Y. M., & Saleh, M. A. (2022). Non-financial variables related to governance and financial distress prediction in SMEs–evidence from Egypt. Journal of Applied Accounting Research, 23(3), 604–627. https://doi.org/10.1108/JAAR-02-2021-0025
Ravi Kumar, P., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review. European Journal of Operational Research, 180(1), 1–28. https://doi.org/10.1016/J.EJOR.2006.08.043
Robert C. Merton. (1974). On the pricing of corporate debt: the risk structure of interest rates. The Journal of Finance, 29(2), 449–470. https://doi.org/https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
Salehi, M., & Davoudi Pour, M. (2016). Bankruptcy prediction of listed companies on the Tehran Stock Exchange. International Journal of Law and Management, 58(5), 545–561. https://doi.org/10.1108/IJLMA-05-2015-0023
Senbet, L. W., &. Wang, T. Y. (2010). Corporate financial distress and bankruptcy: A Survey. Foundations and Trends® in Finance, 5(4), 10.2139.
Sermpinis, G., Tsoukas, S., & Zhang, Y. (2023). Modelling failure rates with machine-learning models: Evidence from a panel of UK firms. European Financial Management, 29(3), 734–763. https://doi.org/10.1111/eufm.12369
Shen, F., Liu, Y., Wang, R., & Zhou, W. (2020). A dynamic financial distress forecast model with multiple forecast results under unbalanced data environment. Knowledge-Based Systems, 192, 105365. https://doi.org/10.1016/J.KNOSYS.2019.105365
Shetty, S., Musa, M., & Brédart, X. (2022). Bankruptcy Prediction Using Machine Learning Techniques. Journal of Risk and Financial Management, 15(1). https://doi.org/10.3390/jrfm15010035
Shi, Y., & Li, X. (2019). An overview of bankruptcy prediction models for corporate firms: A systematic literature review. Intangible Capital, 15(2), 114–127. https://doi.org/10.3926/ic.1354
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business, 74(1), 101–124. https://doi.org/10.1086/209665
Singh, B. P., & Mishra, A. K. (2016). Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies. Financial Innovation, 2(1). https://doi.org/10.1186/s40854-016-0026-9
Son, H., Hyun, C., Phan, D., & Hwang, H. J. (2019). Data analytic approach for bankruptcy prediction. Expert Systems with Applications, 138, 112816. https://doi.org/10.1016/j.eswa.2019.07.033
Song, Y., Li, R., Zhang, Z., & Sahut, J. M. (2024). ESG performance and financial distress prediction of energy enterprises. Finance Research Letters, 65(October 2023), 105546. https://doi.org/10.1016/j.frl.2024.105546
Srhoj, S., Vitezić, V., Giannozzi, A., & Mikulić, J. (2024). Tourism SME default: A note on predictors. Tourism Management, 103(September 2023). https://doi.org/10.1016/j.tourman.2024.104910
Succurro, M., Arcuri, G., & Costanzo, G. D. (2019). A combined approach based on robust PCA to improve bankruptcy forecasting. Review of Accounting and Finance, 18(2), 296–320. https://doi.org/10.1108/RAF-04-2018-0077
Syed Nor, S. H., Ismail, S., & Yap, B. W. (2019). Personal bankruptcy prediction using decision tree model. Journal of Economics, Finance and Administrative Science, 24(47), 157–170. https://doi.org/10.1108/JEFAS-08-2018-0076
Tobback, E., Bellotti, T., Moeyersoms, J., Stankova, M., & Martens, D. (2017). Bankruptcy prediction for SMEs using relational data. Decision Support Systems, 102, 69–81. https://doi.org/10.1016/j.dss.2017.07.004
Tomas Žiković, I. (2018). Challenges in Predicting Financial Distress in Emerging Economies: The Case of Croatia. Eastern European Economics, 56(1), 1–27. https://doi.org/10.1080/00128775.2017.1387059
Tong, Y., & Serrasqueiro, Z. (2021). Predictions of failure and financial distress: A study on Portuguese high and medium-high technology small and midsized enterprises. Journal of International Studies, 14(2), 9–25. https://doi.org/10.14254/2071-8330.2021/14-2/1
Veganzones, D., & Severin, E. (2021). Corporate failure prediction models in the twenty-first century: a review. European Business Review, 33(2), 204–226. https://doi.org/10.1108/EBR-12-2018-0209
Wang, C., Fang, K., Zheng, C., Xu, H., & Li, Z. (2021). Credit scoring of micro and small entrepreneurial firms in China. International Entrepreneurship and Management Journal, 17(1), 29–43. https://doi.org/10.1007/s11365-020-00685-8
Wang, L., & Wu, C. (2017). Business failure prediction based on two-stage selective ensemble with manifold learning algorithm and kernel-based fuzzy self-organizing map. Knowledge-Based Systems, 121, 99–110. https://doi.org/10.1016/j.knosys.2017.01.016
Wu, D. (D.), Liang, L., & Yang, Z. (2008). Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis. Socio-Economic Planning Sciences, 42(3), 206–220. https://doi.org/10.1016/j.seps.2006.11.002
Xie, B., Fang, H., & Tian, C. (2014). Intellectual capital and going-concern prediction in a high-stake context: Evidence from the Chinese stock market. Information Sciences, 278, 395–410. https://doi:10.1016/j.ins.2014.03.097
Yang, C., & You, Y.-Y. (2020). An empirical study on the default prediction model in small and medium-sized enterprises using financial ratios. Research in World Economy, 11(2), 129–135. https://doi.org/10.5430/rwe.v11n2p129
Youn, H., & Gu, Z. (2010). Predicting Korean lodging firm failures: An artificial neural network model along with a logistic regression model. International Journal of Hospitality Management, 29(1), 120–127. https://doi.org/10.1016/j.ijhm.2009.06.007
Young, A., & Wang, Y. (2010). Multi-risk level examination of going concern modifications. Managerial Auditing Journal, 25(8), 756–791. https://doi.org/10.1108/02686901011069542
Yousaf, U. B., Jebran, K., & Wang, M. (2022). A comparison of static, dynamic and machine learning models in predicting the financial distress of Chinese firms. Romanian Journal of Economic Forecasting, 25(1), 122–138.
Zhou, F., Fu, L., Li, Z., & Xu, J. (2022). The recurrence of financial distress: A survival analysis. International Journal of Forecasting, 38(3), 1100–1115. https://doi.org/10.1016/j.ijforecast.2021.12.005
Zoričák, M., Gnip, P., Drotár, P., & Gazda, V. (2020). Bankruptcy prediction for small- and medium-sized companies using severely imbalanced datasets. Economic Modelling, 84(October 2018), 165–176. https://doi.org/10.1016/j.econmod.2019.04.003